Journal of Organometallic Chemistry, 139 (1977) 11–19 © Elsevier Sequoia S A, Lausanne – Printed in The Netherlands

SILACYCLOBUTANE MIT SPERRIGEN SUBSTITUENTEN

II*. SYNTHESE UND SPEKTROSKOPISCHE DATEN EINIGER 1,1,2-TRISUBSTITUIERTER 1-SILACYCLOBUTANE

PETER JUTZI * und PETER LANGER

Institut fur Anorganische Chemie der Universität Wurzburg Am Hubland D8700Wurzberg (BRD)

(Eingegangen den 27 April 1977)

Summary

Starting from 1,1-dichloro-2-methyl-1-silacyclobutane (I) we have synthesized the silacyclobutanes II—V, containing phenyl or t-butyl ligands bonded to silicon The silacyclobutanes VIII and IX with phenyl ligands at the α -C-atom were prepared from the (3-bromo-3-phenylpropyl)halosilanes VI and VII by intramolecular Grignard reactions. From VIII we obtained the silacyclobutanes X and XI with t-butyl ligands at silicon ¹H NMR, IR and mass spectra of the new compounds are described.

Zusammenfassung

Ausgehend vom 1,1-Dichlor-2-methyl-1-sılacyclobutan (I) haben wir die am Silicium phenyl-, bzw. tert butylsubstituierten Silacyclobutane II—V dargestellt Die am α C-Atom phenylsubstituierten Silacyclobutane VIII und IX entstehen aus den (3-Brom-3-phenyl-propyl)halogensilanen VI und VII durch intramolekulare Grignardreaktionen. Aus VIII erhielten wir die am Silicium t-butylsubstituierten Silacyclobutane X und XI. ¹H-NMR-, IR- und Massenspektren der neuen Verbindungen werden beschrieben

Vor kurzem haben wir die Synthese und die spektroskopische Charakterisierung einiger 1,1-disubstituierter 1-Silacyclobutane mit raumerfüllenden Substituenten beschrieben [1]. Von diesen Verbindungen erhoffen wir, dass die bei Thermolyse- oder Photolyseexperimenten moglicherweise entstehenden Silaalkene insofern eine gewisse Stabilisierung erfahren, als Folgereaktionen dieser Silaalkane durch die sperrigen Substituenten erschwert sein sollten. In diesem Zusammenhang berichten wir hier uber Synthese und spektroskopische Daten einiger 1,1,2-trisubstituierter 1-Silacyclobutane

^{*} L Teil s. Lit. [1]

Darstellung

Einige am α -C-atom methylsubstituierte Silacyclobutane sind im Rahmen stereochemischer Untersuchungen bereits von Mazerolles beschrieben worden [2,3] Die Silacyclobutane II-V lassen sich in guten Ausbeuten durch Umsetzung von 1,1-Dichlor-2-methyl-1-silacyclobutan (I) [2] mit einem bzw. zwei Aquivalenten Phenylmagnesiumbromid bzw. t-Butyllithium darstellen.

Für die Substitution der Chlorliganden in II und IV sind wiederum (vergl. [1]) drastischere Reaktionsbedingungen notwendig.

Aus der Reihe der am α -C-Atom phenylsubstituierten Silacyclobutane sind bisher das 1,1-Dimethyl-2-phenyl-1-silacyclobutan [4] und das 1,1,2-Triphenyl-1-silacyclobutan [5] bekannt. Weitere Vertreter erhielten wir durch Ringschlussreaktionen mit entsprechend substituierten 3-Brom-propyl-halogensilanen sowie durch Substitutionsreaktionen am vorgebildeten Silacyclobutanring

Bei der Umsetzung von Trichlor(3-brom-3-phenyl-propyl)silan (VI) bzw von Dichlor-methyl(3-brom-3-phenyl-propyl)silan (VII) mit Magnesium erfolgt in befriedigenden Ausbeuten der Ringschluss zum 1,1-Dichlor-2-phenyl-1-silacyclobutan (VIII) bzw. zum 1-Chlor-1-methyl-2-phenyl-1-silacyclobutan (IX) Diese Cyclisierungen gelingen allerdings nur in Tetrahydrofuran als Losungsmittel, Umsetzungen in Diethylether blieben erfolglos.

∑T ∑E R=CIR=CI, ∑T, DC R=CH₃ R=CI

Die Siliciumverbindungen VI und VII können durch Bromierung der entsprechenden Chlor(3-phenyl-propyl)silane mit N-Bromsuccinimid dargestellt werden. Sie lassen sich durch vorsichtige Vakuumdestillation in reiner Form isolieren. Eine thermisch induzierte HBr-Abspaltung tritt entgegen den Beobachtungen von Valkovich [4] an ahnlichen Systemen unter diesen Bedingungen nicht ein.

Die Halogenatome in VIII können bei der Umsetzung mit t-Butyllithium gegen t-Butylgruppen ausgetauscht werden

Wahrend die Reaktion zum 1-t-Butyl-1-chlor-2-phenyl-1-silacyclobutan (X) äusserst glatt und in guter Ausbeute ablauft, ist die Zweitsubstitution zum 1,1-Di-t-butyl-2-phenyl-1-silacyclobutan (XI) erschwert und erfordert verschärfte Reaktionsbedingungen, wobei unerwunschte Nebenreaktionen (siehe [1]) die Ausbeute an XI herabsetzen

Spektroskopische Daten

Zur Charakterisierung der Verbindungen II-XI haben wir deren 'H-NMRund IR-Spektren aufgenommen, von den neuen Silacyclobutanen werden auch die Massenspektren beschrieben.

Die ¹H-NMR-Daten von II—V und VIII—XI sind in Tabelle 1 zusammengestellt. Bei den Silacyclobutanen II, IV, IX und X ist prinzipiell mit dem Auftreten von Stereoisomeren zu rechnen [3]. Diese sollten sich unter anderem

TABELLE 1

 1 h-NMR-daten der silacyclobutane 11––V. VIII––VI vermessen in ccl4 mit ch2cl2 als internem standard δ -werte in ppm von tms zu niedrigeren feldstärken inten–sitaten in klammern

Verb	C ₆ H ₅	SI-(C)-CH3	C-CH3	H_{α}, H_{β}
11	7 33-7 88m[5]		1 92d[3]	1 00-2 85m[6]
			J 6 Hz	
ш	7 40-7 98m[10]		1 50d[3]	1 60—3 28m[5]
			J 6 Hz	
IV		1.155[5]		
		1 225[4]		1 23-2 77m[8]
v		1 15s[9]		
		1 25s[9]		0 98-2 62m [8]
VIII	6 80-7 25m[5]			3 23-3 67-1[1]
				0 95-1 76m[4]
IX	7 12-7.16m[5]	0 67s[1 1]		3 25-3 62m[1]
		1 355[1 9]		1 34-3 15m[4]
x	7 05-7 35m[5]	1 08s[3 3]		3 18-3 58m[1]
		1 28s[5 7]		1 35-1 88m[2]
				2 22-2 93m[2]
XI	6 95-7 25[5]	1 03s[9]		3 18-3 58m[1]
		1 325[9]		1 04-1 30m[2]
		-		2 35-2.88m[2]

durch jeweils zwei Resonanzsignale fur die Si-(C)-CH₃-Protonen zu erkennen geben. Das Auftreten von Stereoisomeren ist demnach für die Verbindungen IV, IX und X nachzuweisen. Hier beobachtet man für die Protonen der siliciumstandigen t-Butyl- bzw. Methylgruppen jeweils zwei Singuletts unterschiedlicher Intensität. Die Ringprotonen der Silacyclobutane hefern komplizierte Spektren höherer Ordnung, die nicht naher analysiert worden sind.

In den phenylsubstituierten Silacyclobutanen VIII–XI erscheint das benzylartige C_{α} -Proton deutlich von den anderen Ringprotonen zu tieferem Feld abgesetzt. Zusätzlich sind in X und XI die übrigen Ringprotonen in Multipletts für C_{α} - und C_{β} -Protonen separiert Eine ähnliche Aufspaltung der Ringprotonen wurde auch beim 1,1,2-Triphenyl-1-silacyclobutan beobachtet [5]

Aus den IR-Spektren von Silacyclobutanen werden zur Charakterisierung typische Ringschwingungen im Bereich zwischen 840 und 950 cm⁻¹ und Schwingungen der CH₂-Gruppen zwischen 1100 und 1200 cm⁻¹ empirisch zugeordnet [6] Diese Schwingungen haben wir für die Silacyclobutane II---V und VIII-XI in Tabelle 2 zusammengestellt Die durch die Substituenten am α -Cattom bedingte Symmetrieerniedrigung führt zur Aufspaltung einiger Banden, die in Tabelle 2 nicht berucksichtigt wurde (siehe ausführliche IR-Spektren im Versuchsteil).

Wichtige Hinweise für das Verhalten der Silacyclobutane bei der Thermolyse erwarteten wir aus den Massenspektren, da Fragmentierungsprozesse unter Elektronenbeschuss und bei thermischer Behandlung sehr ahnlich verlaufen [7] Die unter nahezu identischen Bedingungen aufgenommenen Massenspektren der Silacyclobutane II—V und VIII—XI sind in Tabelle 3 zusammengestellt Die zugeordneten Zerfallsprodukte zeigen die erwartete Isotopenverteilung. Das Molekühon ist bei allen Silacyclobutanen zu beobachten, allerdings mit stark variierender Intensität Auch die durch Olefinabspaltung entstehenden Silaalken Ionen sind jeweils unterschiedlich stark ausgebildet Die meisten der zugeordneten Fragmentierungen folgen bekannten Zerfallsmustern [8] und lassen sich für die Primärschritte in folgendem Schema zusammenfassen:

Die am α -C-Atom methylsubstituierten Sılacyclobutane II—V zerfallen bevorzugt nach Weg B unter Abspaltung von Propen. Bei den am α -C-Atom phenyl-

TABELLE 2

Verb	Ringschwingungen	CH ₂ -Schwingungen
	÷-	
11	854vs 897m 919m	1118vs 1185m
111	840m 870w 916w	1119vs 1182w
IV	839m 868w.915m	1134m 1182w
v	841m 869w 922w	1133m 1190w
VIII	875s, 911m 936w	1099s 1141m
IN .	882s 909m 940w	1095s 1137w
x	876s, 908m 948m	1099s 1141m
XI	871s 902m 938m	1100s 1140m

substituierten Silacyclobutanen VIII—XI wird nach Weg A die Athylen- gegenüber der Styrolabspaltung bevorzugt. Bei den t-butylsubstituierten Silacyclobutanen IV, V, X und XI konkurriert mit der Olefinabspaltung auch ein Primärzerfall nach Weg C

Über Thermolyseversuche mit den hier und in [1] beschriebenen Silacyclobutanen wird an anderer Stelle berichtet.

Experimentelles

Alle Versuche wurden unter Ausschluss von Feuchtigkeit in N_2 -Atmosphare durchgeführt. ¹H-NMR-Spektren: Varian T 60 (60 MHz), XL 100 (100 MHz); IR-Spektren: Perkin—Elmer 457; Massenspektren: Varian MAT, SM1-BH; C,H-Analysen wurden im Mikrolaboratorium des Instituts durchgeführt Mol-Massen wurden massenspektrometrisch bestimmt.

1-Chlor-1-phenyl-2-methyl-1-silacyclobutan (II)

Zu einer Lösung von 155.1 g (1.0 Mol) I in 250 ml Diethylether wird innerhalb von 3 Stdn eine Losung aus 1 0 Mol Phenylmagnesiumbromid und 300 ml Diethylether unter Ruhren zugetropft Man erwärmt anschliessend noch 3 Stdn unter Ruckfluss, filtriert die entstandenen Magnesiumsalze ab und erhalt II nach Abziehen des Lösungsmittels durch Vak -Destillation Verb II⁻ Kp: 76–78°C/ 0.7 Torr, Ausb. 145.5 g (74%). Analyse. Gef. C, 61.15, H, 6.71, Mol.-Masse, 196. C₁₀H₁₃ClSi ber. C, 61.04, H, 6.66%, Mol Masse, 196 76 IR (in Substanz). 3140 w, 3095 m, 3078s, 3055s, 3030m, 3015m, 3000m, 2980s(sh), 2925vs, 2868vs, 1952w, 1880w, 1814w, 1765w, 1655w, 1592w, 1490m, 1455m, 1433vs, 1395m, 1340m, 1308m, 1219w, 1195w, 1185m, 1125vs(sh), 1118vs, 1068m, 1031w, 1001s, 968m, 919m, 897m, 854vs, 800w, 758m, 740vs, 697vs, 677vs, 632m, 572vs, 538s, 527s, 500s, 464s, 442m cm⁻¹.

1,1-Diphenyl-2-methyl-1-silacyclobutan (III)

Zu einer Lösung von 98.4 g (0.5 Mol) II in 150 ml Diethylether wird innerhalb von 2 Stdn. eine Lösung aus 0 5 Mol Phenylmagnesiumbromid und 200 ml Diethylether unter Rühren zugetropft. Man erwärmt anschliessend noch 3 Stdn. unter Rückfluss. Danach gibt man den Kolbeninhalt auf ein mit Phosphorsaure

TABELLE 3 MASSENSPEKTREN DER VERBINDUNGEN II-V VIII-XI

н	(220°	C.	180	μA	70	e¥)	
---	-------	----	-----	----	----	-----	--

m/e	Ion ⁺	Int %
196	M	2.6
182	M-CH2	79
168	M-C ₂ H ₄	66
154	M-C3H6	36 8
140	C6H5SiCl	53
105	C ₈ H ₉	14 5
91	C7H7	100
77	C6H5	9 2
63	SiCl	618

m/c	lon ⁺	Int.%	
238		16	
210	M-CaHa	64	
196	M-CaHe	13 1	
194	CHS.	12 4	
199	C. Hos	15 4	
176	CITURDI	50	
110	0.17	09	
105	C12H10	31	
105		250	
94	C7H10	100	
	C6H5	50 0	
V (200°)	C 200 µA 70 eV)		
m/e	Ion ⁺	Int.S	
198	М	150	
170	M-C2H3	66	
155	M-C3H7	63	
141	M-CAHo	50 0	
113	C6H13S1	55 4	
99	CcHijSi	96.4	
85	CaHoSi	69.6	
73	CeHua	100	
57	C4H9	92 9	
IX (210°	С 230 µА 70 eV)		
m/e	Ion ⁺	Int.%	
 196	M	27 1	
168	M-C ₂ H ₄	100	
153	M-C3H7	17 1	
132	CinHia	14 3	
117	CoHo	35.0	
105	CoHo	157	
400	108119	101	
52 63	SiCl	28 6 25 7	
XI (210°	С 230 µА 70 eV)		
	 +	 Int %	
 m/e	ion		
m/e			
m/e 260	 	91	
m/e 260 232	M M M C ₂ H ₄	91 09	
m/e 260 232 203	M M M-C ₂ H ₄ M-C ₄ H ₉	91 09 150	
m/e 260 232 203 175	M M-C ₂ H ₄ M-C ₄ H ₉ M-C ₆ H ₁₃	91 09 150 81	
m/e 260 232 203 175 161	$M = \frac{M}{M - C_2 H_4}$ $M = C_2 H_4$ $M = C_4 H_9$ $M = C_6 H_{13}$ $M = C_7 H_{15}$	91 09 150 81 66	
m/e 260 232 203 175 161 135	$M = \frac{M}{M - C_2 H_4}$ $M = C_4 H_9$ $M = C_6 H_{13}$ $M = C_7 H_{15}$ $G_{10} H_{15}$	91 09 150 81 66 125	

C₅H₁₃ C₄H₁₁

96 9

100

73

59

IV (220°C, 250 μA, 70 eV)

m/e	Ion ⁺	Int.%
176	 M	25 9
148	M-C2H4	37 9
133	M-C3H7	65 5
119	M-C4H9	69 0
106	C ₃ H ₇ S ₁ Cl	66 1
93	C2H6SICI	100
79	CH4SICI	62.1
63	SICI	73 3
57	C ₄ H ₉	80 2

VIII (210°C 250 µA 70 eV)

m/e	Ion ⁺	Int H
216	M	13 1
188	$M - C_2 H_4$	38 5
154	C12H10	34 4
117	CoHo	65 6
91	C ₂ H ₂	100
77	C6H5	50 8
63	SICI	164
55		76 2

х	(210	°C	220	μA	70 eV)	
---	------	----	-----	----	--------	--

m/e	Ion ⁺	Int %
238	M	7.7
210	$M - C_2 H_4$	118
195	$M - C_3 H_7$	159
181	M-C4Ho	82
168	M-CcHin	41
145	C11H13	10 6
132	CinHi2	18 8
91	C7H7	100
63	SICI	20 6
57	CaHa	70 6

versetztes Eis/Wasser-Gemisch. Die Atherphase wird abgetrennt und uber Na₂SO₄ getrocknet. Nach Abfiltrieren und Abziehen des Lösungsmittels erhalt man III durch Vak.-Destillation. Verb. III. Kp. 116–119°C/0.1 Torr; Ausb. 83 5 g (70%). Analyse: Gef. C, 80.12, H, 7 53. C₁₆H₁₈Si ber.. C, 80 61; H, 7 61%, Mol Masse, 238.41. IR (in Substanz)⁻ 3135w, 3070m, 3050m, 3020m, 2953s, 2860s, 1950w, 1880w, 1815w, 1583w, 1490w, 1455m, 1431vs, 1378w, 1307w, 1266w, 1249w, 1191w, 1182w, 1132m, 1119vs, 1110sh, 1065w, 1030w, 1000w, 966w, 916w, 870w, 840m, 738vs, 710vs, 698vs, 650m, 610m, 530s, 475m, 440w cm⁻¹.

1-t-Butyl-1-chlor-2-methyl-1-silacyclobutan (IV)

Zu einer Lösung von 62 0 g (0 4 Moi) I in 150 ml Hexan werden bei -78° C 0 4 Mol einer t-Butyllithium/Hexan-Losung unter Ruhren zugetropft. Man erwärmt langsam bis auf Raumtemperatur und zur Vervollstandigung der Reaktion noch 6 Stdn unter Rückfluss Nach Abfiltrieren des ausgefallenen LiCl und Abziehen des Hexans erhalt man IV durch Vak.-Destillation. Verb IV Kp 106–109°C/100 Torr, Ausb. 55.5 g (78%) Analyse: Gef.: C, 53 93; H, 9 56, Mol. Masse, 176. C₈H₁₇ClSi ber.⁻ C, 54 36, H, 9 69%; Mol Masse, 176 77. IR (in Substanz): 2940vs, 2900s, 2862vs, 1476s, 1468s, 1409m, 1398m, 1380w, 1369s, 1249w, 1200w, 1182w, 1134m, 1062m, 1010m, 966m, 941m, 915m, 868w, 839m, 823s, 788w, 745m, 685s, 641m, 630m, 607m, 578s, 537s, 512s, 461w, 448w, 405w, 340w cm⁻¹.

1,1-Di-t-butyl-2-methyl-1-silacyclobutan (V)

Zu einer Lösung von 35.2 g (0.2 Mol) IV in 150 ml Heptan werden unter Eiskuhlung und Ruhren 0 2 Mol einer t-Butyllithium/Hexan-Losung langsam zugegeben Bei Erwärmen auf Raumtemperatur trübt sich die Losung durch ausfallendes LiCl. Nach zweitagigem Ruhren wird 5 Stdn. unter Rückfluss erwarmt (Gilman-Test negativ). Nach Abfiltrieren des LiCl und Abziehen der Losungsmittel erhalt man V durch Vak.-Destillation. Verb. V: Kp. 84-86°C/10 Torr; Ausb 26 9 g (67%) Analyse: Gef \cdot C, 72.02; H, 12 99, Mol. Masse, 198 C₁₂H₂₆Si ber . C, 72.64, H, 13 21%. Mol Masse, 198 43 IR (in Substanz) 2960vs, 2930vs, 2895vs, 2860vs, 2710w, 1475s, 1409w, 1391m, 1369s, 1250w, 1200w, 1190w, 1133m, 1086w, 1070m, 1015m, 975m, 939m, 922w, 869w, 841m, 822s, 741m, 690s, 625s, 608m, 564m, 549m, 498m, 445w, 412w cm⁻¹.

Trichlor(3-brom-3-phenyl-propyl)silan (VI)

190.0 g (0.75 Mol) Trichlor(3-phenylpropyl)silan [9] werden in 350 ml CCl₄ mit 150 0 g (0 84 Mol) *N*-Bromsuccinimid und Azoisobuttersäuredinitril als Radikalstarter bromiert. Das entstandene Succinimid und nicht umgesetztes NBS werden abfiltriert, nach Abziehen des Losungsmittels erhalt man VI durch Vak -Destillation Verb. VI· Kp. 122–125°C/0 3 Torr, Ausb. 224.5 g (90%). Analyse. Gef : C, 33 06; H, 3 14; C₉H₁₀BrCl₃Si ber ⁻ C, 32.51; H, 3 03%; Mol Masse, 332 55. ¹H-NMR (δ , ppm). 7 30–7.45 (m, 5, C₆H₅), 1.17–1.80 (m, 2, H_{α} $_{\beta}$), 2 20–2 73 (m, 2); 4 93 (t, 1, H_{γ}; J 7.5 Hz)

Dichlor-methyl(3-brom-3-phenyl-propyl)silan (VII)

Darstellung analog Verb. VI aus 175 0 g (0.75 Mol) Dichlor-methyl(3-phenyl-

propyl)sılan [9] und 150.0 g (0 84 Mol) *N*-Bromsuccinimid Verb. VII: Kp. 128–130°C/0.5 Torr; Ausb. 208.5 g (89%). Analyse: Gef.: C, 39.01; H, 4.40. $C_{10}H_{13}BrClSi$ ber.: C, 38.48; H, 4 20%; Mol Masse, 312.13. ¹H-NMR (δ , ppm)⁻7.27–7.47 (m, 5, C_6H_5); 0.77–1.40 (m, 2, $H_{\alpha \beta}$), 2.10–2.70 (m, 2), 4 90 (t, 1, H_{γ} , *J* 7.5 Hz); 0.73 (s, 3, S1–CH₃).

1,1-Dichlor-2-phenyl-1-silacyclobutan (VIII)

Zu 61.0 g (2.5 g Atom) frisch aktivierten Magnesiumspanen in 300 ml THF wird innerhalb von 4 Stdn eine Lösung aus 167.0 g (0.50 Mol) VI und 30.0 g (0.16 Mol) 1,2-Dibromathan in 500 ml THF unter kräftigem Rühren derart zugetropft, dass das THF leicht siedet. Anschliessend wird 2 Stdn. unter Ruckfluss erwärmt. Die ausgefallenen Magnesiumsalze und das nicht umgesetzte Mg werden abfiltriert. Nach Einengen des THF und Zugabe von Diethylether werden die restlichen, hierbei ausfallenden Mg-Salze abfiltriert und mit Diethylether ausgewaschen. Nach Abziehen der Lösungsmittel erhalt man VIII durch Vak.-Destillation. Verb. VIII. Kp. 93–94°C/0.5 Torr; Ausb. 69.5 g (64%). Analyse. Gef.: C, 49.59, H, 4.58, Mol. Masse, 216, C₉H₁₀Cl₂Si ber : C, 49.77; H, 4.64%; Mol. Masse, 217.15. IR (in Substanz): 3090w, 3065w, 3035m, 2970w, 2940m, 2875w, 1940w, 1865w, 1795w, 1606m, 1520s, 1459s, 1401m, 1348w, 1245w, 1212w, 1200w, 1190w, 1141m, 1099s, 1075w, 1038m, 936w, 911m, 875s, 818w, 770vs, 752vs, 699vs, 667s, 590vs, 562s, 520vs, 340w, 301w cm⁻¹.

1-Chlor-1-methyl-2-phenyl-1-sılacyclobutan (IX)

Darstellung analog Verb. VIII aus 61 g (2.5 g Atom) Mg, 156.0 g (0.5 Mol) VII und 30 g 1,2-Dibromathan; Verb. IX: Kp $80-82^{\circ}$ C/0.2 Torr, Ausb. 59.0 g (60%) Analyse: Gef : C, 60 91; H, 6.70; Mol. Masse, 196. C₁₀H₁₃ClS₁ ber.: C, 61 05; H, 6.66%; Mol. Masse, 196 76; IR (in Substanz): 3105w, 3080w, 3060w, 3020m, 2925m, 2860w, 1935w, 1860w, 1790w, 1602s, 1586w, 1498s, 1454m, 1405m, 1341w, 1259s, 1210w, 1137w, 1095s, 1070m, 1033m, 940w, 900m, 882s, 802s, 786vs, 765s, 699vs, 664m, 640w, 565s, 535s, 506s, 434w, 310w cm⁻¹.

1-Chlor-1-t-butyl-2-phenyl-1-silacyclobutan (X)

Darstellung analog Verb. IV aus 54 3 g (0 25 Mol) VIII und 0 25 Mol t-Butyllithium. Verb. X: Kp. 87–88°C/0.1 Torr, Ausb. 49.0 g (82%). Analyse. Gef.. C, 64 87; H, 7.91; Mol. Masse, 238. C₁₃H₁₉ClSi ber.: C, 65 38; H, 8 02%; Mol. Masse, 238 84. IR (in Substanz): 3105w, 3090m, 3085m, 3030m, 2960vs, 2938vs, 2865vs, 2718w, 1945w, 1860w, 1795w, 1608s, 1534w, 1500vs, 1478vs, 1419vs, 1410m, 1399m, 1371s, 1254w, 1250w, 1219m, 1202m, 1141m, 1099s, 1075m, 1039m, 1012m, 988w, 948m, 908m, 876s, 825vs, 765vs, 745vs, 700vs, 659s, 630s, 580vs, 548m, 513s, 454m, 399w, 338w cm⁻¹.

1,1-Di-t-butyl-2-phenyl-1-sılacyclobutan (XI)

Zu einer Lösung von 49.0 g (0.21 Mol) X in 150 ml Hexan tropft man unter Rühren 0.2 Mol einer t-Butyllithium/Hexan-Lösung. Man erwarmt 3 Tage unter Rückfluss, wobei LiCl ausfällt und die Lösung orange verfarbt. Anschliessend gibt man den Kolbeninhalt auf ein Eis/Wasser-Gemisch, äthert aus und trocknet die organische Phase über Na₂SO₄ Nach Abziehen der Losungsmittel erhalt man XI durch Vak -Destillation Verb. XI: Kp. 126°C/0 05 Torr, Ausb 24.0 g (46%). Analyse: Gef. C, 77 94, H, 10 93, Mol Masse, 260. $C_{17}H_{28}S_1$ ber . C, 78.38, H, 10 83%; Mol. Masse, 260 50 IR (in Substanz) · 3100w, 3080m, 3060m, 3025m, 2970vs, 2935vs, 2890s, 2860vs, 2765w, 2740w, 2710w, 1930w, 1860w, 1790w, 1604s, 1580w, 1499vs, 1425vs, 1450m, 1410w, 1392s, 1320s, 1290w, 1260w, 1254w, 1220w, 1202m, 1186w, 1160w, 1140m, 1100s, 1075m, 1035m, 1012m, 990w, 938m, 902m, 871s, 821vs, 758vs, 729s, 698vs, 650s, 620m, 611m, 589m, 548m, 501m, 422w, 395w, 310w cm⁻¹

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstutzung. Herrn Dr. N. Pelz danken wir für die Aufnahme der Massenspektren.

Literatur

- 1 P Jutzi und P Langer J Organometal Chem 132 (1977) 45
- 2 J Dubac P Mazerolles M Lesbre und M Jolv J Organometal Chem 25 (1970) 367.
- 3 J Dubac P Mazerolles und B Serres, Tetrahedron, 30 (1974) 749 759
- 4 P B Valkovich T J Ito und W P. Weber, J Org Chim. 39 (1974) 3543
- 5 H Gilman und W H Atwell J Amer Chem. Soc 86 (1964) 2687
- 6 J Laane J Amer Chem Soc 89 (1967) 1144
- 7 V.Y Orlov LE Gusci nikov NS Nametkin und R L Ushakova Org Mass Spectr 6 (1972) 309
- 8 CS Cundy, MF Lappert und TR Spalding J Chem Soc Dalton 6 (1976) 558
- 9 A D Petrov E A. Chernvshev M E. Dolgaya, Y P Egorov und L A Leites Zh Obshch Khim 30 (1960) 376 Chem Abstr 54 (1960) 22435b